Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 53(2): e8793, 2020. tab, graf
Article in English | LILACS | ID: biblio-1055493

ABSTRACT

Aliskiren (ALS) is well known for its antihypertensive properties. However, the potential underlying the molecular mechanism and the anti-hypertrophic effect of ALS have not yet been fully elucidated. The aim of the present study was to investigate the role of ALS in mammalian target of rapamycin (mTOR) and apoptosis signaling using in vivo and in vitro models of cardiac hypertrophy. A rat model of cardiac hypertrophy was induced by isoproterenol treatment (5 mg·kg-1·day-1) for 4 weeks, with or without ALS treatment at 20 mg·kg-1·day-1. The expression of hypertrophic, fibrotic, and apoptotic markers was determined by RT-qPCR. The protein expression of apoptotic markers mTOR and p-mTOR was assessed by western blot analysis. The proliferation of H9C2 cells was monitored using the MTS assay. Cell apoptosis was analyzed using flow cytometry. In vivo, isoproterenol-treated rats exhibited worse cardiac function, whereas ALS treatment reversed these dysfunctions, which were associated with changes in p-mTOR, Bcl-2, Bax, and cleaved caspase-3 expression, as well as the number of apoptotic cells. In vitro, H9C2 cardiomyocyte viability was significantly inhibited and cardiac hypertrophy was induced by Ang II administration, but ALS reversed Ang II-induced H9C2 cardiomyocyte hypertrophy and death. Furthermore, Ang II triggered the activation of the mTOR and apoptosis pathways in hypertrophic cardiomyocytes that were inhibited by ALS treatment. These results indicated that ALS alleviated cardiac hypertrophy through inhibition of the mTOR and apoptosis pathways in cardiomyocytes.


Subject(s)
Animals , Male , Rats , Apoptosis/drug effects , Cardiomegaly/prevention & control , TOR Serine-Threonine Kinases/metabolism , Fumarates/administration & dosage , Amides/administration & dosage , Fibrosis/chemically induced , Fibrosis/prevention & control , Angiotensin II/pharmacology , Signal Transduction/drug effects , Blotting, Western , Rats, Sprague-Dawley , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Disease Models, Animal , TOR Serine-Threonine Kinases/drug effects , Flow Cytometry , Isoproterenol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL